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Abstract

From early in childhood, humans exhibit sophisticated intuitions about how to share knowledge
efficiently in simple controlled studies. Yet, untrained adults often fail to teach effectively in real-world
situations. Here, we explored what causes adults to struggle in informal pedagogical exchanges. In
Experiment 1, we first showed evidence of this effect, finding that adult participants failed to commu-
nicate their knowledge to naïve learners in a simple teaching task, despite reporting high confidence
that they taught effectively. Using a computational model of rational teaching, we found that adults
assigned to our teaching condition provided highly informative examples but failed to teach effectively
because their examples were tailored to learners who were only considering a small set of possible
explanations. In Experiment 2, we then found experimental evidence for this possibility, showing that
knowledgeable participants systematically misunderstand the beliefs of naïve participants. Specifically,
knowledgeable participants assumed naïve agents would primarily consider hypotheses close to the
correct one. Finally, in Experiment 3, we aligned learners’ beliefs to knowledgeable agents’ expecta-
tions and showed learners the same examples selected by participants assigned to teach in Experiment
1. We found that these same examples were significantly more informative once learners’ hypothesis
spaces were constrained to match teachers’ expectations. Our findings show that, in informal settings,
adult pedagogical failures result from an inaccurate representation of what naïve learners believe is
plausible and not an inability to select informative data in a rational way.
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1. Introduction

From the first years of life, humans engage in informal pedagogy more flexibly and fre-
quently than any other animal species (Gweon, 2019; Skerry, Lambert, Powell, & McAuliffe,
2013). Our propensity to share what we know allows us to compile extensive bodies of knowl-
edge over time and underlies the development of human culture (Tennie, Call, & Tomasello,
2009; Tomasello, Kruger, & Ratner, 1993). However, despite the pervasiveness of informal
pedagogy, sharing knowledge is far from straightforward. Explaining too much can be tedious
and inefficient, while explaining too little can be outright ineffective. To share knowledge suc-
cessfully, we must convey the right content in the right quantity, requiring us to reason about
and track what others already know (Olson & Bruner, 1996; Tenenbaum & Griffiths, 2001).
In this paper, we seek to better understand adults’ capacity to engage in everyday informal
pedagogy.

Informal pedagogy emerges early in the human lifecourse (see Gweon, 2021, for review).
By the end of preschool, children can already infer other people’s knowledge based on how
they behave (Aboody, Zhou, Flowers, & Jara-Ettinger, 2019, Aboody, Zhou & Jara-Ettinger,
2021, Aboody, Huey & Jara-Ettinger, 2022 ; Einav & Robinson, 2011; Jara-Ettinger, Floyd,
Tenenbaum, & Schulz, 2017; Wu & Schulz, 2018), use these inferences to decide what
information to share (Baer & Friedman, 2018; Ronfard & Corriveau, 2016; Strauss, Ziv, &
Stein, 2002), and expect others to do the same (Bonawitz et al., 2011; Bridgers, Jara-Ettinger,
& Gweon, 2019; Gweon & Asaba, 2017; Gweon & Schulz, 2018; Gweon, Shafto, & Schulz,
2018; Rhodes, Bonawitz, Shafto, Chen, & Caglar, 2015). Given children’s early under-
standing of pedagogical principles, one might expect adults to excel at informal pedagogy,
but this is not the case. The literature on adult informal pedagogy shows a combination
of clear successes (e.g., Ho et al., 2016; Shafto, Goodman, & Griffiths, 2014), as well as
failures (Bromme, Brummernhenrich, Becker, & Jucks, 2012; Chi, Siler, Jeong, Yamauchi,
& Hausmann, 2001; Chi, Siler & Jeong 2004 ; Graesser, Person, & Magliano, 1995).

Naturally, teaching tasks where adults fail are more complex than those where they suc-
ceed. For example, in a now classical study, Chi, Siler, and Jeong (2004) showed that college
students asked to tutor eighth graders in an open-dialogue session often failed to detect, diag-
nose, and correct misconceptions and tended to overestimate how much their students knew.
By contrast, Shafto et al. (2014) showed that, in a constrained task (where participants could
only place two dots on a screen to convey the location and size of a hidden rectangle), adults
could easily generate the best possible teaching strategy (enabling learners to infer both rel-
evant dimensions: size and location; and even six-year-olds succeed in conceptually similar
tasks; Rhodes, Gelman, & Brickman, 2010).

The goal of our paper is to take a first step in investigating what causes untrained adults
to struggle in more complex teaching tasks. One possibility is that the more complex a task,
the more likely adults will be to misrepresent what learners know or consider plausible. If so,
adults may be teaching effectively relative to what they think the learner knows but ultimately
fail because this initial representation was wrong. Under this account, untrained adults suc-
ceed in simpler tasks because their representation of learners’ knowledge is more accurate
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but fail in more complex tasks because they do not consider the full space of possibilities that
learners may be considering.

Alternatively, adults may struggle to teach in complex tasks not because they misrepre-
sent learners’ beliefs, but because they struggle to determine what kind of data would be
most informative to share. That is, teaching in more complex tasks may require more com-
plex planning because these tasks typically involve longer teaching events, where there are
a greater number of possibilities about what information to share. Even if an untrained tutor
understands what a learner initially knows or finds plausible, they may struggle to decide
which pieces of information will be most useful to share. Under this account, adults may fail
to teach effectively because deciding what to share and how to prioritize different pieces of
information is challenging.

While both of these limitations likely play a role, identifying their individual contribution
to informal pedagogical performance has been challenging. Tasks that elicit adult teaching
failures are generally too complex for formal analysis: sessions are long and naturalistically
unconstrained, making it difficult to identify the causes behind people’s failures (and iden-
tifying the sources of failure is often not the main goal of the work; see VanLehn, 2011,
for review). Conversely, tasks that are amenable to formal analysis are those where people
generally succeed (e.g., Shafto et al., 2014), making them unsuitable for understanding the
challenges that untrained tutors face in complex tasks.

1.1. The current paper

In the current paper, we seek to better understand what gives rise to teaching failures in
untrained adults. Given that people excel at sharing knowledge in simple tasks (e.g., Shafto
et al., 2014), but struggle in more complex ones (e.g., Chi et al., 2004), identifying the causes
behind adults’ successes and failures requires an intermediate task, richer than those where
adults overwhelmingly succeed, but simple enough to enable us to identify the causes of
variation.

To design such a task, we focused on the domain of causal reasoning, as we frequently learn
and communicate cause-and-effect relations in our daily lives, and this process is well under-
stood and has been formalized via computational modeling (see Holyoak & Cheng, 2011, for
a review). Specifically, we used a “blicket-detector” paradigm, where a simple opaque box
(known as the blicket detector) will activate whenever “blickets” are placed on top. Criti-
cally, blickets can be either individual objects or combinations of objects. In this paradigm,
knowledgeable agents can choose different combinations of objects to place on the blicket
detector, with the goal of getting a naïve learner to infer the underlying rule. Blicket-detector
paradigms had their origins in developmental science (Gopnik, 2012; Griffiths, Sobel, Tenen-
baum, & Gopnik, 2011; Kushnir, Gopnik, Lucas, & Schulz, 2010) but have since been used
extensively with adults as well (e.g., Benton & Rakison, 2020; Gelpi, Prystawski, Lucas, &
Buchsbaum, 2020; Griffiths et al., 2011; Herbst, Lucas, & Buchsbaum, 2017; Tenenbaum &
Griffiths, 2003), as they provide a simple experimental paradigm to test causal learning with-
out any interference from people’s world knowledge (a potential limitation that we return to
in the discussion). We implemented a causal structure we expected to be learnable but not
trivially obvious, drawing on prior research showing that a causal relationship based upon the
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logical operator “and”—where two blocks in conjunction are required to activate a machine—
is not immediately obvious to adults (see Gopnik et al., 2017; Lucas, Bridgers, Griffiths, &
Gopnik, 2014). We expected that communicating a causal structure might be more difficult for
adults than previous teaching tasks (e.g., Shafto et al., 2014), while remaining simple enough
to be analyzed via computational modeling.

Before proceeding, it is important to emphasize that this paper is not aimed at assess-
ing the capacities of trained teachers and educators. Rather, we seek to understand adults’
basic, everyday abilities to communicate our knowledge. For simplicity, in the remainder of
the paper, we use the words “teach” and “teaching” to refer to the early-developing human
capacity to share our knowledge informally and “teachers” to refer to participants assigned
to an experimental teaching condition where they received privileged knowledge and were
asked to communicate it to naïve learners. Because our goal is to understand the abilities of
everyday adults, we recruited our sample from the general population.

In Experiment 1, we first confirm that our paradigm elicits teaching failures (despite peo-
ple’s confidence that they taught effectively), and, through a computational model of ped-
agogical reasoning (Shafto & Goodman, 2008; Shafto et al., 2014; Wang et al., 2020), we
show that these failures are not due to adults generating poor examples. Instead, our computa-
tional model suggests that these failures emerge because naïve learners’ hypothesis spaces are
substantially larger than what knowledgeable adults assume. Experiment 2 directly assessed
adults’ expectations about learners’ beliefs, finding that knowledgeable adults do not antici-
pate the breadth of hypotheses a naïve learner will find plausible. These results suggest that
knowledgeable adults can provide useful data under the expectation that learners are only
considering a constrained set of hypotheses, predicting that their examples should be fully
informative when this assumption is correct. We test this prediction in Experiment 3 and find
that aligning learners’ hypothesis spaces to knowledgeable adults’ beliefs improves learn-
ing, even from the same examples that had previously elicited learning failures. All data,
analysis scripts, model code and stimuli are publicly available at the project OSF page:
https://osf.io/pg9zy.

2. Computational framework

Our computational framework is inspired by previous research investigating how people
share information (Frank & Goodman, 2012; Goodman & Frank, 2016; Shafto et al., 2014;
Wang, et al., 2020). For consistency with literature in this field, we refer to untrained tutors
as “teachers,” in the sense that they are asked to engage in the act of teaching. Teachers
can be formalized as generating data, given their knowledge of the correct hypothesis, and
learners can be formalized as inferring which hypothesis best explains a teacher’s decision to
produce the observed data. The process of teachers tailoring their data to learners and learners
reasoning about the pedagogical data can be formalized through a pair of recursive equations:

pteacher (D|H ) ∝ plearner (H |D) (1)

https://osf.io/pg9zy
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and

plearner (H |D) ∝ pteacher (D|H ) (2)

where pteacher (D|H) is the probability that the teacher will generate certain data, D, given the
true hypothesis H; and plearner (H|D) is the probability that the learner will infer the correct
hypothesis given the data that they observe. These equations formalize the idea that rational
teachers select data that will allow rational learners to infer the right hypothesis and that
rational learners infer this hypothesis by reasoning about why the teacher chose the data they
did (Shafto et al., 2014).

The learner’s success in recovering the right hypothesis (Eq. 2) depends on two factors:
the teacher’s data and the learner’s hypothesis space. Here, our main interest is in using this
model to evaluate teachers’ data. Thus, pteacher (D|H) is obtained from Experiment 1, and
these data are evaluated using Eq. 2. To gauge the quality of the data, we designed a set
of hypothesis spaces that sequentially increase in complexity, by combining basic primitive
hypotheses using two logical operators: AND and OR.

In our task, participants were introduced to a novel machine and five blocks (lettered A–
E). Participants assigned to our teaching condition learned that together, blocks B and E
activated the machine (see the Method section of Experiment 1 for details). Here, the most
basic “primitive” hypotheses correspond to a belief that a specific block must be on top of
a machine for it to activate (e.g., that block A activates the machine, that block B activates
the machine, and so on). There were five available blocks, and thus there are five primitive
hypotheses. To scale hypothesis spaces up in complexity, we varied two dimensions.

First, we expanded our hypothesis spaces by increasing the number of primitive hypothe-
ses (A, B, C, D, or E) that could be combined into a single hypothesis (called the depth). For
example, at a depth of two, up to two primitives can be combined per hypothesis (yielding
hypotheses such as: (B); AND(A, C); OR(B, E)).1 These hypotheses correspond to simple
beliefs participants might hold about the machine (e.g., that block B makes the machine acti-
vate by itself, that blocks A and C together are required to make the machine activate, or
that either block B or E makes the machine activate). Increasing the depth allows for more
complex hypotheses: At a depth of three, up to three primitives can be combined in a sin-
gle hypothesis (yielding hypotheses such as OR(A, B, E), which expresses a hypothesis that
either block A, B, or E makes the machine activate by itself). At a depth of four, up to four
primitives can be combined in a single hypothesis and so on. This approach is consistent with
related work in cognitive science that captures how hypothesis spaces scale in complexity
(see Jin et al., 2018), finding that expression length is a useful proxy for complexity (Good-
man, Tenenbaum, Feldman, & Griffiths, 2008; Piantadosi, Tenenbaum, & Goodman, 2012;
Velez-Ginorio, Siegel, Tenenbaum, & Jara-Ettinger, 2017).

In these hypothesis spaces, each set of primitives is combined by only one type of logical
operator (i.e., primitives are either combined by AND or OR but not both). We refer to
these as “single-operator” spaces. A second way to expand hypothesis spaces is by allowing
individual hypotheses to combine both logical operators. We refer to these as “dual-operator”
spaces. This adjustment introduces compositionality; a dual-operator hypothesis space at
depth three could contain hypotheses such as: OR(AND(B, E), (E)) (which corresponds to the
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hypothesis that either B and E together are required to make the machine activate, or that E
may be sufficient by itself).2 Although single-operator hypothesis spaces can only be scaled
up to a ceiling of five (e.g., AND(A, B, C, D, E); OR(A, B, C, D, E)), dual-operator spaces
can be scaled much higher (e.g., with a ceiling of seven, one possible hypothesis would be:
OR(AND(A, B, E), AND(B, E), (B), (E), corresponding to the hypothesis that either A, B,
and E together are required to make the machine activate, that B and E together are required,
or that B or E may be sufficient on their own to make the machine activate).

3. Experiment 1

Prior research on teaching in naturalistic contexts has focused on situations where knowl-
edgeable and naïve individuals directly interact (e.g., Chi et al., 2004). However, in these con-
texts, it can be difficult to determine to what extent pedagogical outcomes can be attributed
to the teacher versus the learner. For instance, if some learners are more naturally commu-
nicative than others, their teachers may have an easier time selecting informative data. Our
task was designed to enable independent evaluation of teacher and learner performance. Thus,
knowledgeable participants assigned to a teaching condition first selected examples to reveal
how a blicket detector worked, and these examples were then shown to multiple naïve learn-
ers (allowing us to measure how effective a teacher’s examples are without concern that these
results will be unduly influenced by a single inattentive learner).

Specifically, Experiment 1 assigned participants to either a teaching or a learning task. Par-
ticipants in the teaching task learned how to activate a machine and then generated examples
to demonstrate how the machine worked. Participants in the learning task saw one teacher’s
examples and then explained how the machine worked. Teachers’ performance was assessed
based on the proportion of naïve participants who learned how the machine worked. The
sources of any failures were analyzed by providing teacher-selected data as an input to our
model.

3.1. Methods

3.1.1. Participants
Two hundred and twenty participants were recruited from Amazon’s Mechanical Turk plat-

form. The first 20 participants (mean age = 35.4; range = 21–70) were assigned to the teacher
condition, and the last 200 participants (mean age = 34.4; range = 19–68) were assigned to
the learner condition. Five additional participants were recruited but not included in the exper-
iment because they failed an inclusion question (teacher n = 1; learner n = 2) or because they
did not follow task instructions and provided fewer than three unique examples (teacher n =
2).

3.1.2. Stimuli
Stimuli consisted of images of a “light-up” machine with a triangle on the front and five

blocks lettered A–E. The color of the triangle signaled whether the machine was on or off (see



R. Aboody et al. / Cognitive Science 47 (2023) 7 of 31

Fig. 1. Stimuli and experimental procedure. “Teacher” and “Learner” refer to the experimental conditions that
participants were assigned to. All participants were introduced to the machine and the blocks and learned how to
identify whether the machine was on or off, but only teachers were taught how the machine worked. Teachers then
selected examples to communicate how the machine worked; learners observed these examples (n = 10 learners
assigned to each teacher), and their understanding of the machine was assessed.

Fig. 1). When two particular blocks (B and E) were placed on top of the machine together, it
activated (henceforth, referred to as the “B&E” rule). The presence or absence of other blocks
did not affect the outcome. We chose a machine with a novel causal structure for the teaching
task because prior research demonstrates that children and adults can often learn how such
machines work from limited data (Gopnik, 2012; Griffiths et al., 2011; Kushnir et al., 2010).
We selected the B&E rule because prior work shows that adults do not find a conjunctive
activation rule trivially obvious (Gopnik et al., 2017; Lucas et al., 2014).
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3.1.3. Procedure
Informed consent was obtained from all participants for all experiments reported in the

manuscript and associated Supporting Information.

3.1.3.1. Teachersb: Participants assigned to the teacher condition were introduced to the
light-up machine and were told how it worked (learning that both blocks B and E were neces-
sary to activate the machine and that other blocks did not matter). To be included in the task,
participants needed to pass an attention check question (selecting the number 2 on a Likert
scale) and correctly identify which blocks were necessary to activate the machine.

To reinforce teachers’ understanding of the machine, participants were asked to identify
whether the machine was on or off in three scenarios (see OSF page for the full survey),
and inaccurate responses were corrected. Participants then rated their confidence (on a Likert
scale) that they understood how to activate the machine and could teach another person how it
worked. To ensure that teachers understood the task, participants were asked to identify what
their learners would know prior to seeing any examples (the correct answer was that learners
would only know how to tell whether the machine was on or off), what the learners’ goal was
(the correct answer was that the learners’ goal was to understand the machine as well as they
did), and we ensured that teachers understood how to indicate whether they wanted to provide
another example or whether they wanted to end the task. As before, incorrect responses were
corrected.

Finally, teachers were asked to generate between three and 20 unique examples that would
teach a naïve learner how the machine worked. Critically, teachers were explicitly told that
learners would know nothing about how the machine worked but that their understanding of
the machine would be tested after they saw teachers’ examples. After selecting examples,
participants were asked to rate their confidence that these examples would be effective in
teaching another person how the machine worked. For completeness, we also asked teachers
whether there were any examples they wanted to show but were not able to; and vice versa,
whether they felt that they had provided more examples than necessary.

3.1.3.2. Learners: Participants assigned to the learner condition first learned that they
were about to see a new machine and that another person had chosen examples to teach them
how the machine worked (see Fig. 1). To be included in the task, participants needed to pass
an attention check question (selecting the number 2 on a Likert scale, presented near the
midpoint of the task; see OSF page for the full survey).

Learners first saw the light-up machine and the five blocks and learned that when the
machine activated, the white triangle on the front of the machine lit up and turned yellow. Ten
learners were assigned to view each teacher’s examples; so after learning what the machine
looked like when it activated, learners saw the set of examples their assigned teacher had gen-
erated. Each example was shown as an image. The blocks the teacher had chosen appeared
on top of the machine, and the triangle indicated whether the machine was on or off (see
Fig. 1). Accompanying text also described whether or not the blocks in each example caused
the machine to turn on.
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Finally, learners’ understanding was assessed through a qualitative and a quantitative mea-
sure. For our qualitative measure, participants were asked to provide a written explanation
of how the machine worked. For our quantitative measure, participants were asked to predict
which block combinations would activate the machine (out of the 31 possible combinations).
To produce a quantitative score for each participant, we sum the number of correct responses.
The order of the 31 possible block combinations was initially randomized to ensure that trials
did not appear as a structured sequence, and then presented to all participants in the same
order. Learners also rated their confidence (on a Likert scale) that they understood how to
activate the machine and for completeness indicated whether they thought their teacher had
provided more examples than necessary (see Supporting Information).

3.2. Results

After the task introduction, teachers were both confident they understood how to activate
the machine (M = 6.75, SD = 0.44, range = 6–7 on a 7-point scale), and that they could
teach another person how the machine worked (M = 6.6, SD = 0.68, range = 5–7 on a 7-
point scale), suggesting that the task introduction was clear. Although teachers were only
required to provide a minimum of three unique examples, they produced an average of 7.5
examples (SD = 4.39, range = 3–20), with only two participants providing the minimum. This
demonstrates that participants were motivated to teach and did not just put in the minimum
effort required. Furthermore, participants felt that they were able to teach effectively within
the constraints of the task, with only one participant indicating that there was an example
they had been unable to show (this participant wanted to show blocks B and E arranged in a
different order).

After selecting their examples, participants were confident they had taught well, judging
that a naïve participant would successfully learn from their examples (M = 6.05, SD = 0.76,
range = 5–7 on a 7-point scale). Seventy percent of teachers even thought they had provided
more examples than necessary, judging that they had provided an average of 2.8 “extra” exam-
ples (SD = 2.8, range = 1–12).

Despite teachers’ confidence that they had taught effectively and learners’ confidence that
they had figured out how the machine worked (M = 5.3, SD = 1.57, range = 1–7 on a 7-
point scale), only 50% of learners (n = 100) performed at or near ceiling in the quantitative
task, making no more than one mistake when identifying which block combinations activated
the machine (n = 88 performing perfectly). While the remaining 50% of participants failed
to learn the exact activation rule, they nonetheless showed evidence that they had partially
learned how the machine worked. On average, these participants correctly predicted whether
the machine would be activated in 70.6% of trials, performing significantly above chance
(t(99) = 17.58; p < .001; see Fig. 2). Although it is possible that learner performance reflects
only differences in individuals’ motivation or attention, a regression revealed that this is not
the case. Learners’ performance is significantly predicted by the teacher they were assigned to
learn from (p = .03; note that throughout, all regression p-values are obtained via permutation
tests).



10 of 31 R. Aboody et al. / Cognitive Science 47 (2023)

Fig. 2. Distribution of participants’ quantitative scores (out of 31 questions), grouped by the teacher they learned
from. Teachers are arranged by the mean number of questions their learners answered correctly, from highest
(Teacher 1) to lowest (Teacher 20). Each point represents one learner. The color of each point indicates how
confident teachers were that a naïve learner would understand how the machine worked from their examples, from
lightest (least confident) to darkest (most confident). While learners performed above chance overall, there is still
variation in their scores, demonstrating that teachers’ data were not maximally informative for every learner.

To uncover the types of errors learners made, we examined their qualitative explanations.
These explanations were coded into the following four categories (set a priori; see OSF
page for the coding scheme): uninformative “other” explanations (e.g., “When the machine
is on, the triangle turns to the yellow color”), correct explanations, incorrect explanations
that focused on the “right kinds” of hypotheses (realizing that the machine was activated
by certain blocks but failing to correctly identify the activation rule; e.g., “Certain letter
combinations cause the machine to turn on”; “It’s possible the presence of E turns it on and
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all other letters do nothing [off]”), and incorrect explanations that focused on the “wrong
kinds” of hypotheses (failing to identify the relevant feature of the task and referencing
incorrect activation mechanisms; e.g., “If two or more blocks are placed on the machine, it
turns on”; “The machine turns on when the blocks are places on opposite sides”). The first
and second authors independently coded participants’ explanations according to this coding
scheme; inter-rater reliability was high (Cohen’s κ = 0.85; p < .001).

Nine learners (4.5%) provided uninformative explanations, and 104 learners (52%) cor-
rectly described how to activate the machine. These learners were largely the ones who per-
formed well on the quantitative task (86 performed perfectly, and six made one error). The
remaining 87 participants (43.5%) produced incorrect explanations: 42 learners (21%) gave
the “right kind” of explanation, understanding that the blocks mattered but failing to iden-
tify the right ones, and 45 (22.5%) gave the “wrong kind” of explanation, focusing on task-
irrelevant features. For completeness, we also asked learners whether they felt their teacher
had provided extra examples; see Supporting Information.

3.3. Model-based analysis of performance in the teaching condition

Despite teachers’ confidence, many learners struggled to learn how the machine worked.
Why were teachers’ examples often ineffective? Did participants assigned to teach under-
estimate the breadth of possibilities learners considered (providing data that were effective
only if a learner was considering a narrow hypothesis space)? Or did teachers form an accu-
rate epistemic representation, but fail to effectively plan over it (struggling to identify useful
examples)?

We analyzed teachers’ examples by providing them as inputs to our computational model,
using a uniform prior over all hypotheses.3 Given a hypothesis space, the model computes
how teachers’ examples should affect learners’ beliefs. If learners struggled because teachers
provided confusing data, then the model should fail to infer how the machine works given any
hypothesis space. However, if the model succeeds in inferring how the machine works given
simple hypothesis spaces (but not complex ones), this would suggest that teachers misunder-
stood learners’ hypothesis spaces and provided under-informative data.

We first evaluated teacher examples4 using the simplest hypothesis space: a single-operator
hypothesis space with a depth of 2 (see Computational Framework for an explanation of the
parameters). Hypotheses contained in this space were either single blocks (e.g., B), or com-
prised two blocks, combined with an AND or an OR operator, (e.g., AND(B, E); 25 hypotheses
total). The model inferred the correct rule for 75% of teachers (n = 15), placing over 95% of
the posterior probability mass on the correct hypothesis (these results are identical when the
mass threshold is decreased to 50%). For the remaining five participants, the model contin-
ued to place the highest posterior probability on the correct hypothesis (B & E; on average
27%), but other hypotheses were rated as equally or similarly plausible, preventing the right
hypothesis from accruing a probability mass above 50%.

The model’s success shows that teachers’ data were informative given a constrained
hypothesis space. This suggests that many learners did not consider a hypothesis space this
constrained because their performance was substantially poorer than our model’s: Only 50%
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of learners performed at or near ceiling on the quantitative task, and only 52% were able to
correctly explain how the machine worked.

To gauge the efficacy of teachers’ data as hypothesis space complexity increased, we
repeated the same analysis with each of the remaining hypothesis spaces. The model con-
tinued to succeed for the same 75% of teachers in all of the simple single-operator hypothesis
spaces, for all depth values (max depth = 5). By contrast, in the smallest dual-operator space
(a depth of 3 or 95 hypotheses total), the model inferred the activation rule for only 55% of
teachers (n = 11). The remaining teachers produced examples that failed to rule out alterna-
tive hypotheses. At a depth of four (300 hypotheses), the model inferred the activation rule
for only 25% of teachers (n = 5). At a depth of five and six (852 and 2222 hypotheses, respec-
tively), the model did not infer the activation rule for any teachers, suggesting that learners did
not consider hypothesis spaces this complex, as many learners did succeed in learning about
the machine from teachers’ examples. As before, while no other hypotheses were ever rated
as more likely than the B&E rule, there continued to be too many hypotheses left that were
consistent with teachers’ data. Thus, while teachers’ examples were sufficient for a modeled
learner to infer the activation rule in simple hypothesis spaces, they were under-informative
in more complex ones.

Importantly, our model inferences are insensitive to the size of a hypothesis space: Bayesian
updating applies the same rule to all hypotheses without problem in finite hypothesis spaces
like the ones we consider here, with size affecting only the time it takes to do so. Thus,
according to our model, teachers’ data were under-informative in complex hypothesis spaces
not because they contained a greater number of hypotheses but rather because they contained
a greater variety. This suggests that teachers may have misunderstood the breadth of learners’
hypothesis spaces, selecting examples under an expectation that learners considered a simple
set of hypotheses. However, it is also possible that our smaller hypothesis spaces were so
simple that any set of examples would have enabled the model to learn how the machine
worked. If this is the case, this would suggest that teachers’ examples were not uniquely
informative, and any random set of examples would have sufficed.

To test whether teachers’ data were uniquely informative, we generated 10,000 random
sequences of 20 examples (the maximum number teachers could provide in our task). To
test whether teachers’ examples were not only helpful, but given in a particularly informative
order, we randomly reordered each teacher’s examples (generating all possible permutations
if there were less than 10,000 possible permutations, n = 7 examples or less, and sampling
10,000 permutations otherwise). We compared the randomly sampled and reordered examples
to Because our model already failed to infer the true hypothesis from any teacher’s examples
given a dual-operator hypothesis space at a depth of five, we do not consider more complex
hypothesis spaces.

Consistent with the possibility that teachers provided uniquely informative data, in the
simplest hypothesis space, the model converged on the true hypothesis most quickly given
teachers’ original data as compared to the same data presented in a shuffled order. In turn,
shuffled data caused the model to converge on the true hypothesis more quickly than randomly
sampled data (see Fig. 3). The same pattern held for the rest of the single-operator hypothesis
spaces. However, in our smallest dual-operator space (at a depth of three), the difference
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Fig. 3. Posterior probability mass placed on the true hypothesis (B&E) by the model as a function of teachers’
examples. The posterior of the true hypothesis given teachers’ original examples is plotted in blue; the posterior-
given shuffled data are plotted in purple; and the posterior-given randomly generated examples are plotted in red.
The dashed lines mark the 50% and 95% probability thresholds. In simpler hypothesis spaces, teachers’ original
examples are more informative than the same examples presented in a random order, which is more informative in
turn than randomly generated examples. But as hypothesis spaces grow in complexity, teachers’ examples break
down, eventually becoming less informative than randomly generated examples (for a plot including intermediate
hypothesis spaces not depicted here, see Supporting Information, Fig. S1).

between teachers’ data in its original and shuffled order shrank; and as hypothesis spaces
continued to increase in complexity, teachers’ data ceased to be useful, ultimately becoming
less informative than randomly sampled data.

These results support two conclusions: First, teachers not only provided informative exam-
ples but also gave them in a particularly informative order. Second, these results suggest
that teachers generated their examples under an assumption that learners had a constrained
hypothesis space: While teachers’ data were uniquely well-suited when considered under
simple, constrained hypothesis spaces, it became less informative than randomly generated
examples when considered under richer hypothesis spaces.

3.4. Experiment 1 replications

We conducted two replications. First, to ensure that the results of Experiment 1 were robust,
we conducted a direct replication. The results of our direct replication were qualitatively iden-
tical to that of the original experiment, showing that our results are reliable (see Supporting
Information for details).

Second, although most teachers in Experiment 1 were satisfied with their teaching per-
formance, one participant reported that there were examples they had wanted to show but
had been unable to share due to the constraints of the online task. Did the online nature of
the teaching task hinder participants’ teaching performance? To test whether this is the case,
we conducted a pre-registered replication where we recruited in-lab participants to complete
the teaching task. In our original online teaching task, participants could select which blocks
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they wanted to show but could not manipulate variables like order, orientation, or location. In
our in-lab teacher replication, participants were introduced to an actual machine they could
touch and interact with and provided examples by placing blocks directly on the machine.
Participants were able to manipulate every feature of their demonstrations; each demonstra-
tion was then photographed and shown to learners (recruited from Amazon Mechanical Turk,
as before).

If teachers recruited from Amazon Mechanical Turk were inattentive or were unable to
show the kinds of examples they wanted, then teachers who participated in the lab should
provide much more informative examples. Participants in the in-lab teacher condition were
recruited from the campus community, and unlike the online participants, we were able to
ensure they participated in a controlled environment (in a quiet room with no distractions).
These participants did not provide a greater number of unique examples than those who par-
ticipated online, giving an average of 7.45 examples (SD = 3.71, range = 3–16) with only
one participant producing the minimum. Teachers were again confident that a naïve partic-
ipant would successfully learn from their examples, with a mean confidence rating of 5.35
(SD = 1.04, range = 4–7 on a 7-point scale). Additionally, when asked why they had stopped
providing examples, 19 of 20 participants explicitly said they had stopped when they felt their
examples were sufficient (e.g., “I felt like I would have understood how the machine works at
that point”; “More examples weren’t necessary. It would have led to the learner getting con-
fused”; “I thought I had covered all the important information”; see Supporting Information
for full explanations).

Despite teachers’ confidence, learners again struggled. Only 26.5% of learners (n = 53)
performed at or near ceiling in the quantitative task (n = 49 performing perfectly), and only
29.5% (n = 59) correctly explained how the machine worked (see Supporting Information for
full results and model-based analyses). This suggests that our results are not due to teaching
constraints imposed by running the experiment online—and in fact, constraining the kinds of
examples teachers could provide may have actually improved pedagogical outcomes.

3.5. Discussion

Experiment 1 aimed to distinguish between two potential explanations for why untrained
adults fail in complex pedagogical tasks, testing whether adults fail to provide informative
data, or whether they struggle to grasp the kinds of hypotheses learners could be considering.
To do so, we introduced participants to a simple machine and taught them how it worked.
Participants then chose examples to teach a naïve learner how the machine worked. After see-
ing examples generated by participants in the teaching condition, learners explained how they
thought the machine worked and judged whether the machine was on or off for all possible
block combinations. Across both our original experiment and two replications, participants
in the teacher condition reported high confidence that naïve learners would understand how
the machine worked after seeing their examples. But despite this confidence, many learners
still failed to infer how the machine worked. Why might this be? According to our model,
participants in the teaching condition produced data that were highly informative given sim-
ple hypothesis spaces but became progressively less helpful as hypothesis spaces increased
in complexity. These results suggest that knowledgeable participants may have generated
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examples under an assumption that learners would consider only a constrained set of hypothe-
ses, whereas actual learners may have considered a broader spread of possibilities, thus ren-
dering teachers’ examples under-informative.

However, it is also worth considering whether our results could be explained by simpler
task- or motivation-based alternatives. A first possibility is that participants in the teacher
condition simply were not motivated to succeed in our task. Our data suggest that this was not
the case: Most participants provided more examples than the minimum required, and partici-
pants recruited in the lab did not provide more examples than those who participated online.
A second possibility is that the task design constrained participants in a way that prevented
them from teaching successfully. This could explain teaching failures in our online tasks,
where participants could only choose the identity of the blocks (but were unable to manipu-
late dimensions like order, position, or orientation). If this were the case, participants should
have then succeeded in our in-lab replication, where participants could place the blocks in any
way that they wanted. However, in-lab participants were actually less effective than our online
teachers (only 26.5% of participants who learned from in-lab teachers performed at or near
ceiling in the quantitative task). This suggests that our online task design cannot explain the
failures of knowledgeable participants to teach well. In Experiment 2, we elicit knowledge-
able agents’ explicit judgments over naïve learners’ beliefs, testing whether teachers’ failures
in Experiment 1 genuinely arose from a misunderstanding of learners’ hypothesis spaces.

4. Experiment 2

Experiment 1 suggests that, when teaching, adults may misrepresent learners’ beliefs,
assuming that learners consider a more constrained hypothesis space than they actually do. To
test this possibility, Experiment 2 directly asked knowledgeable and ignorant participants to
rate the plausibility of different hypotheses about how the machine from Experiment 1 works.
Knowledgeable participants received the same introduction as participants in Experiment 1’s
teaching condition, being told exactly how the machine worked. Naïve participants received
the same introduction as learners in Experiment 1, learning what the machine looked like
when it was on but not what made it turn on. To assess the impact of privileged knowledge,
participants in both groups rated hypotheses about how the machine worked. Knowledgeable
participants rated how likely a naïve agent would find each possibility; naïve participants rated
how likely they themselves found each possibility. If participants in Experiment 1’s teaching
condition misrepresented the range of hypotheses naïve learners could find plausible, then
knowledgeable and naïve participants’ ratings should diverge in a systematic way.

4.1. Methods

4.1.1. Participants
Forty participants were recruited from Amazon’s Mechanical Turk platform. The first

20 participants (mean age = 38.3; range = 22–64) were assigned to the knowledgeable con-
dition, and the last 20 participants (mean age = 35.4; range = 23–60) were assigned to the
naïve condition. Six additional participants were recruited in the knowledgeable condition but
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were not included because they failed the inclusion question (identifying which blocks made
the machine go).

4.1.2. Stimuli
Stimuli consisted of a list of hypotheses for how the machine works. We began with

the true hypothesis (that B and E were both required to make the machine activate) and
built the rest of the list based on incorrect explanations from the learner qualitative task in
Experiment 1. A qualitative analysis of these responses suggested that explanations fell into
seven categories: (a) placing certain blocks on the machine made it go, even if other blocks
were also present; (b) placing certain blocks on the machine made it go only if other blocks
were not also present; (c) placing certain blocks on the machine, in a specific order, made it
go; (d) placing certain blocks on the machine made it go, but specific blocks could inhibit the
machine from activating if also placed on top; (e) the machine only activated when the right
number of blocks were placed on top; (f) the machine only activated when the right letters
were on top (e.g., maybe the blocks needed to spell out a word) or when the blocks were in
the right location on top; and (g) explanations coded as “other.”

We generated at least one exemplar from each category, and generated more hypotheses
from categories that were more common or with greater intrinsic variability, forming a list of
26 possible hypotheses (this list also contained the true hypothesis; see Supporting Informa-
tion for full list).

4.1.3. Procedure
Participants in the knowledgeable condition saw the same introduction as participants in

the teaching condition in Experiment 1, learning exactly how the light-up machine worked.
Demonstrating that they had indeed learned how the machine worked, participants in the
knowledgeable condition were confident they understood (M = 6.75, SD = 0.44, range = 6–
7) and could teach how the machine worked (M = 6.75, SD = 0.55, range = 5–7). Participants
in the naïve condition saw the same introduction as the learners in Experiment 1, learning how
to identify whether the light-up machine was on or off but not learning which blocks made it
go. As in Experiment 1, participants in the knowledgeable condition who could not identify
which blocks made the machine go were excluded; participants in both conditions were also
excluded if they did not pass our attention check measure (selecting the number 2 on a Likert
scale).

After completing the introduction, participants from both conditions were presented with
all 26 possible hypotheses, one at a time. The hypotheses were initially randomized so that
they did not appear grouped by category but were presented to all participants in the same
order. Participants in the knowledgeable condition were explicitly told “Before they see your
examples, the other worker has no idea how the machine works,” and were asked to rate
the hypotheses from the perspective of a naïve learner, indicating how likely a naïve agent
would find each hypothesis from 0 (very unlikely) to 100 (very likely). Participants in the
naïve condition were asked to rate how likely they themselves found each possibility, along
the same scale.
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Fig. 4. (a-b) Participants’ mean ratings of each hypothesis in the naïve and knowledgeable conditions, respec-
tively (ordered by knowledgeable participants’ ratings). The shaded areas indicate 95% bootstrapped confidence
intervals. The dotted lines indicate the mean rating across all hypotheses by condition. While naïve participants
rated all hypotheses save two as being equally likely, knowledgeable agents’ ratings generally diverged from the
condition mean. (c) Difference in mean rating of each hypothesis by condition. Positive values indicate that knowl-
edgeable participants found a hypothesis more likely, and negative values indicate that naïve participants found a
hypothesis more likely. The error bars are bootstrapped 95% confidence intervals. Bars are shaded according to
whether knowledgeable participants found a hypothesis more likely (lightest values), whether naïve participants
found a hypothesis more likely (darkest values), or whether there was no reliable difference between conditions.
(d) Key for the 26 hypotheses presented in panels (a–c).

4.2. Results

Overall, participants in the naïve condition found all 26 hypotheses relatively unlikely
(M = 35.5, SD = 25.5; see Fig. 4a). While participants in the knowledgeable condition
correctly judged that naïve agents would find the hypotheses presented unlikely overall (M
= 27.8, SD = 30.3; see Fig. 4b), the two rating distributions significantly differed (p <

.001 by computing a permutation test over the between-condition sum of squared errors).
Specifically, comparing the difference in participants’ ratings by condition reveals that
knowledgeable agents overestimated how likely naïve ones were to find the true hypothesis
and closely related hypotheses, and underestimated how likely they were to find possibilities
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farther from the truth (assessed by computing a 95% bootstrapped confidence interval over
the difference between knowledgeable and naïve agents’ ratings; see Fig. 4c).

4.3. Discussion

In Experiment 2, we tested if knowledgeable agents could correctly predict how likely
naïve agents would find different hypotheses about a light-up machine. Our results show that,
even when provided with a set of hypotheses to rate, knowledgeable agents could not evaluate
them from the perspective of a naïve agent. Participants in the naïve condition found 24 of the
26 hypotheses equally plausible, while participants in the knowledgeable condition overesti-
mated naive agents’ belief in hypotheses that were similar to the true one and underestimated
their belief in hypotheses distant from the truth.

Building upon our findings from Experiment 1, these results further suggest that partici-
pants in the teaching condition failed to realize that naïve learners were likely to consider
hypotheses further from the truth. While these results do not reveal the exact hypotheses that
each individual learner actually considered in Experiment 1, the hypotheses participants rated
were generated based upon learners’ incorrect explanations (n = 96 explanations in Experi-
ment 1). Therefore, they are likely representative of other hypotheses that learners might have
considered plausible (and that participants in the teaching condition dismissed, or even failed
to consider in the first place). These results are consistent with our modeling analyses from
Experiment 1, suggesting that knowledgeable participants did not anticipate the breadth of
hypotheses learners might reasonably consider—and thus that their failure to teach was, in
part, caused by a failure to consider or address these alternate possibilities when providing
examples.

5. Experiment 3

Experiments 1–2 suggest that untrained adults tend to fail at teaching causal relations
because they provide examples under an (erroneous) expectation that learners consider only
the right kinds of hypotheses. If this is the case, then learning performance should improve if
learners’ hypothesis spaces are constrained to match the expectations of participants assigned
to teach. Experiment 3 tests this possibility, constraining learners’ beliefs by first showing
them how to activate two other light-up machines. We hypothesized that this would help
learners realize that only block identity (and not other features such as order or orientation)
determined whether a machine would activate, helping them align their hypothesis space to
knowledgeable participants’ expectations.

5.1. Methods

5.1.1. Participants
Two hundred participants were recruited from Amazon Mechanical Turk (mean age = 34.4;

range = 18–66). One additional participant was recruited and replaced because they failed an
attention check.
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5.1.2. Stimuli
Stimuli consisted of three light-up machines: the original machine and two additional train-

ing machines. Each machine was of a different size and color to the original but clearly
belonged to the same category (for pictures see Supporting Information, Fig. 2). The first
training machine was presented with three blocks, L, M, and N. Only block M was required
to make the machine activate. The second training machine was presented with six blocks, Q,
R, S, T, U, and V. Blocks Q, T, and V were all required to make the machine activate. As with
the original machine, the presence of additional blocks did not affect whether the training
machines activated, and neither did the order of the blocks.

5.1.3. Procedure
Participants were shown an image of the two training machines and the original light-up

machine side by side. Participants were told that they would read explanations about how
the first two machines worked, and they then would learn how the third (original) machine
worked by seeing examples another participant had selected for them.

As in Experiment 1, participants first learned that when a light-up machine activated, the
white triangle on the front of the machine lit up and turned yellow. Then participants were
introduced to the first training light-up machine and its three corresponding blocks, L, M,
and N. They were explicitly told that the machine only turned on when block M was placed
on top, that other blocks did not matter, and that the order of the blocks did not matter. To
illustrate, they saw two examples of the machine activating: in the first example, only block
M was on top, and in the second example, all three blocks were on top. To assess whether
participants understood how the machine worked, they were asked to identify which block
made the machine activate, and whether the machine was on or off in two examples (note that
these and the following memory check questions did not serve as inclusion criteria).

Next, participants were introduced to the second training light-up machine and its six cor-
responding blocks, Q, R, S, T, U, and V. They were told that this machine only turned on when
blocks Q, T, and V were all on top and that other blocks and the order of blocks did not mat-
ter. To illustrate, they saw two examples of the machine activating. In the first example, only
blocks Q, T, and V were on top; in the second, all six blocks were on top. Participants again
answered three questions about the machine, identifying which blocks made the machine
activate and whether the machine was on or off in two examples.

Finally, participants were shown the third (original) light-up machine and its five corre-
sponding blocks, A, B, C, D, and E. By introducing all three machines as exemplars of the
same “light-up machine” category, we expected participants to infer that all of the machines
worked the same way (because adults readily use category knowledge to infer properties of
new exemplars; Osherson, Smith, Wilkie, Lopez, & Shafir, 1990). Additionally, after intro-
ducing the third light-up machine, participants were explicitly told that their goal was to figure
out which block(s) were responsible for making the machine activate, and which block(s) did
not matter. After being reminded again that they were about to see examples selected to teach
them how the machine works, participants proceeded to see a set of examples selected by a
participant assigned to teach in Experiment 1.
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Fig. 5. Difference in learners’ performance on the quantitative test questions between Experiments 1 and 3. Each
bar represents the learners assigned to one participant from the teaching condition in Experiment 1. The bars are
arranged in order from greatest to least improvement in Experiment 3. Positive values indicate that learners in
Experiment 3 performed better on the quantitative measure; negative values indicate that learners in Experiment 1
performed better.

After seeing these examples, participants’ understanding was assessed as in Experiment
1: They were asked to explain how the machine worked, indicate their confidence that they
understood how to activate the machine on a Likert scale, and answered the same 31 quanti-
tative test questions (indicating whether the machine was on or off for all 31 possible com-
binations of blocks). As before, participants were excluded if they did not pass our attention
check measure (selecting the number 2 on a Likert scale).

5.2. Results

Despite receiving the exact same teacher-generated examples as learners in Experiment 1,
learners in the current experiment were significantly more confident they understood how the
machine worked (M = 6.2, SD = 1.09, range = 1–7 on a 7-point scale; β = 0.87, p < .001).
This confidence was justified: They also performed significantly better on the quantitative test
questions (M = 92.1%, SD = 15.7; β = 2.18, p < .001; see Fig. 5). These results confirm
our model-based analyses, suggesting that teachers’ data were highly informative for learners
with a constrained hypothesis space. Thus, previous learning failures may have stemmed from
teachers’ poor representation of learners’ initial beliefs.

To isolate the source of learners’ improvements, we next analyzed their qualitative expla-
nations. As before, the first and second authors independently coded learners’ qualitative
explanations (Cohen’s κ = 0.95; p < .001). Four participants provided uninformative
explanations and were therefore excluded from qualitative analyses. Confirming that our
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manipulation was successful, fewer participants provided explanations focusing on the wrong
kinds of hypotheses (Experiment 1, n = 45/200; Experiment 3, n = 7/200). A two-proportion
z-test demonstrated that this difference was significant, p < .001. Instead, validating our
model-based analyses, more participants provided correct explanations (Experiment 1, n
= 104/200; Experiment 3, n = 150/200). Again, a two-proportion z-test demonstrated that
this difference was significant, p < .001). Last, there was no difference in the number of
participants who produced the “right kind” of explanation, understanding that the identity of
the blocks mattered but failing to identify the right blocks in their explanations (Experiment
1, n = 42/200; Experiment 3, n = 39/200; two-proportion z-test, p = .80). This result suggests
that our manipulation was effective in constraining learners’ hypothesis spaces, leading to
improvement in learners’ performance.

Finally, consistent with the predictions of our account, the efficacy of a teacher’s exam-
ples (calculated as the mean number of test questions their learners answered correctly
in Experiment 3 minus Experiment 1) is marginally predicted by the proportion of their
learners whose explanations referenced the wrong kinds of hypotheses in Experiment 1 (β
= 0.77; p = .0545). This suggests that even teachers whose learners were most off-base in
Experiment 1 provided data that were informative to learners with constrained hypothesis
spaces.

5.3. Discussion

Taken together, Experiments 1 and 2 suggest that participants in the teaching condition
provided data under an assumption that learners consider constrained hypothesis spaces (pri-
oritizing hypotheses similar to the truth). Thus, knowledgeable participants’ data may have
been informative for learners considering a more constrained hypothesis space but under-
informative otherwise. In the current experiment, we directly test whether constraining learn-
ers’ hypothesis spaces render teachers’ data more informative. Consistent with the results of
Experiments 1 and 2, we find that this is the case: Learners were both more accurate on our
quantitative test questions and more likely to produce correct qualitative explanations of how
the machine worked.

While we chose to manipulate learners’ beliefs to match those of participants assigned
to teach, our hypothesis predicts that learning outcomes should also improve if we aligned
teachers’ beliefs to match those of their learners. Doing so is difficult for two main reasons.
First, to obtain a stable measure of teaching efficacy, each teacher’s data had to be evaluated
against multiple learners; it would have been difficult to cleanly ensure that each participant
in the teaching condition had an accurate grasp of all 10 learners’ hypothesis spaces. Second,
learners likely did not come into the task with a pre-specified hypothesis space but rather
generated and discarded hypotheses as the task progressed (and we return to this point in the
General Discussion). This makes it difficult to ensure that teachers always have an accurate
grasp of learners’ expectations. Nonetheless, the fact that aligning learners’ expectations to
those of teachers significantly improved performance suggests that teachers’ data were indeed
informative but not adequately tailored to fully naïve learners’ beliefs.
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6. General discussion

Despite the ubiquity and early developmental origins of informal pedagogy (Gweon, 2021),
adults often struggle to share information effectively (e.g., Chi et al., 2004; Graesser et al.,
1995; Hinds, 1999; Siler & VanLehn, 2015). In this paper, we sought to better understand
adults’ abilities to informally share information. Across three experiments (and two replica-
tions), we investigated why untrained adults teach well in some tasks but not others, testing
whether adults struggle to grasp the breadth of hypotheses naïve learners could be consid-
ering, or whether they struggle to decide what data will be most informative to share. In
Experiment 1, we introduced a teaching paradigm that was simple enough to be analyzed
quantitatively but complex enough that it elicited teaching failures. Adults assigned to the
teaching condition were given an opportunity to select a sequence of examples to reveal how
a novel machine worked. Despite these participants’ confidence that their examples would
enable a naïve participant to learn how the machine worked, participants presented with these
examples often failed to uncover how the machine worked. To investigate the source of these
failures, we implemented a computational model of rational teaching (Shafto et al., 2014)
that evaluated the quality of untrained teachers’ examples under different learner hypothesis
spaces.

By varying the complexity of potential learner hypothesis spaces, our model revealed that
knowledgeable adults can generate highly informative examples tailored to a learner con-
sidering a simple hypothesis space. In this case, participants’ examples revealed how the
machine worked more effectively than a random series of examples, and most impressively,
better than the same examples presented in a random order. These results suggest that adults
are proficient at sharing information in a way that most effectively scaffolds learning. At the
same time, our model also revealed that knowledgeable participants’ examples ceased to be
useful under more complex hypothesis spaces. Thus, participants might have failed to teach
effectively because their learners were considering a richer set of hypotheses than what they
expected.

In Experiment 2, we found a direct mismatch between naïve agents’ beliefs and knowledge-
able agents’ representations of those beliefs. Consistent with Experiment 1, knowledgeable
participants assumed that naïve agents would find hypotheses close to the truth to be more
plausible, whereas, in reality, naïve participants found all hypotheses to be comparably likely.
Critically, the hypotheses that participants rated represented the types of explanations that
learners considered in the actual task (as they were generated based upon learners’ expla-
nations in Experiment 1). These results further suggest that people’s difficulty teaching in
Experiment 1 arose from a failure to consider the wider range of hypotheses that learners
considered plausible—and not due to an inability to generate informative examples.

Finally, Experiment 3 confirmed that knowledgeable participants’ examples were infor-
mative when given to a naïve learner whose beliefs matched their expectations. Specifically,
when learners’ hypothesis spaces were constrained, they learned more effectively from exam-
ples generated by adults in the teacher condition. Taken together, these results suggest that
adults’ failures to effectively teach in our task were not due to a poor capacity to generate
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informative data but rather due to a poor understanding of the kinds of beliefs learners find
likely.

Combined, our work has four main findings. First, our work shows that adults engaged in
informal teaching do not struggle to select helpful pieces of information, even in situations
where the space of possible examples is large. Participants assigned to the teaching condition
were highly informative (both in the examples they selected and the order in which they pre-
sented them), and their examples were useful for learners with constrained hypothesis spaces.
These results demonstrate that failures to teach in our task emerged because knowledgeable
participants assigned to teach underestimated the richness of learners’ hypothesis spaces.
Although humans share our knowledge ubiquitously (and generally effectively), our results
suggest that we may sometimes struggle to gauge what naïve others could believe—and thus
fail to successfully communicate our knowledge.

Second, our results shed light on how privileged knowledge affects pedagogical perfor-
mance. While prior research has found that knowledgeable agents are often affected by a
curse of knowledge (wherein their ability to reason about naïve minds is impaired by their
own privileged knowledge; Camerer, Loewenstein, & Weber, 1989; Hinds, 1999; Nickerson,
1999; Nickerson, Baddeley, & Freeman, 1987), this phenomenon is broad in scope (from
formal pedagogy to simple everyday communication) and can occur in one of two ways. A
first possibility is that the curse of knowledge is a form of representational leak, whereby
agents struggle to separate their own knowledge from their representations of other people’s
knowledge (i.e., assuming that others know what they know). A second possibility is that the
curse of knowledge impairs agents’ ability to predict and track what others believe, without
necessarily confusing others’ knowledge for their own (i.e., assuming their instruction helps
learners rule out alternatives more effectively than it actually does). Our results point toward
the first possibility: Participants assigned to teach had privileged knowledge, and this affected
their ability to estimate what a naïve person would find plausible. Because knowledgeable
participants based their examples upon inaccurate representations of learners’ beliefs, most
teachers’ examples were appropriately informative as long as learners’ beliefs were also con-
strained (e.g., in Experiment 3). This suggests that participants assigned to teach were biased
by their own knowledge when initially estimating what hypotheses a learner might find plau-
sible but were able to accurately track how their examples would affect a learner’s beliefs.

Third, our work suggests that adults engaging in informal pedagogy can track how their
examples affect learners’ beliefs. Participants in Experiment 1 generated highly informative
pedagogical data with an informative temporal structure (i.e., providing the right examples
in the right order). This ability is particularly impressive when considering that people had
to select multiple examples sequentially, could not review past examples, and were unable to
engage with learners in real time to better understand their knowledge state.

Finally, our results also highlight the importance of teaching as a professional practice
that requires years of training. Although even young children have remarkably sophisticated
intuitions about pedagogical principles (see Gweon, 2019, for review), informal pedagogy
appears to be most effective in situations where learners have a relatively constrained hypoth-
esis space. Therefore, as society builds increasingly complex bodies of knowledge, the value
of trained educators becomes even more important. For instance, trained teachers may have
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greater experience engaging in metacognition (thinking about thinking; Flavell, 1979) over
their own knowledge and pedagogical process and in considering how to encourage the same
in learners (e.g., Blakey & Spence, 1990; Pintrich, 2002; Wilson & Bai, 2010 ). In particular,
repeated and extensive experience with students might help professional educators gain more
precise representations of naïve learners’ beliefs (e.g., Herppich, Wittwer, Nückles, & Renkl,
2013).

6.1. Study limitations

Our work has several limitations. First, our study explored informal pedagogy using blicket
detectors—opaque machines used to study how people learn causal relations from statistical
information (Bonawitz & Lombrozo, 2012; Gopnik, Sobel, Schulz, & Glymour, 2001; Sobel
& Kirkham, 2007). Critically, blicket detectors isolate causal reasoning by making the under-
lying mechanism unknown. We therefore do not know how our findings would change when
people teach about a system with a non-opaque mechanism. It is possible that learners in our
task had a surprisingly broad hypothesis space because they lacked mechanistic information
to constrain it with. If so, then people might succeed in informal pedagogy more often than
our task suggests because learners may often have narrow hypothesis spaces constrained by
the underlying mechanism. Nonetheless, our work still shows that, in the absence of mech-
anistic information, people have trouble representing what a naïve learner might consider
plausible, therefore failing to share information effectively.

A related limitation is that our task focused on a single learning rule, where the relevant
causal relation relied upon the logical operator “AND”: Both blocks B and E were needed to
make the machine activate. Thus, we do not know to what extent pedagogical success might
change under different activation rules. Note however, that participants failed to teach because
they did not realize naïve learners might consider radically different types of hypotheses (such
as “a combination of blocks that could form a word” or “blocks [that] are far apart”; see
Experiments 1 and 2). Therefore, our results would only change if a different activation rule
helped untrained teachers become aware of the broader hypothesis space that learners might
consider. This is a direction we hope future work will explore.

A third limitation is that our work required us to formalize the relative complexity of dif-
ferent hypothesis spaces. To do so, we used expression length as a proxy for complexity—a
common approach in computational cognitive science (e.g., Goodman et al., 2008; Piantadosi
et al., 2012; Velez-Ginorio et al., 2017) However, the complexity depends on the system’s
compositional primitives: For instance, in our model, expressing the hypothesis that any one
block might make the machine activate requires one operator and five elements (OR(A, B,
C, D, E)). This hypothesis is considered more complex than related hypotheses (such as the
hypothesis that either B or E make the toy go; OR(B, E)). But if our model included the
operator “any,” then the reverse would be true (ANY() contains fewer elements and would be
simpler than OR(B, E)). While this is a fundamental problem in cognitive science (Goodman,
1983), future work should explore the relative perceived complexity of different hypothesis
spaces in these learner contexts. Nevertheless, because our hypothesis spaces scale logically,
more complex hypothesis spaces contain all hypotheses from the preceding spaces. Thus, no
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matter which hypotheses we code as “simple” or “complex,” our key result—that knowledge-
able adults engaged in pedagogy provide insufficient evidence for learners considering varied
hypotheses—still stands.

One final limitation is that our work did not study how the processes behind people’s fail-
ures to teach might appear in other domains. Specifically, people’s failure to select disconfir-
matory evidence for others is reminiscent of a failure to select disconfirmatory evidence in
first-person tasks (where adults often explore examples that confirm their hypotheses but not
those that have the potential to disconfirm them; e.g., Wason, 1960 ). One critical difference,
however, is that people in first-person tasks have access to their own beliefs, while in peda-
gogy, people must act under a representation of what they think others think. It is unclear to
what extent shared computations underlie an ability to: (a) discover a rule firsthand and (b)
communicate a rule to others (without first having to discover it oneself and without having
firsthand access to learners’ beliefs). Future research should investigate these questions.

6.2. Open questions

Our findings open several additional questions for future work. First, we do not know how
knowledgeable agents form their beliefs about a naïve agent’s hypothesis spaceosf. One possi-
bility is that knowledgeable agents construct a space of possibilities by taking the right answer
(in our case the B and E rule), and then modifying it to generate a set of plausible alternatives.
This would explain why participants assigned to teach in our task expected learners to prior-
itize hypotheses close to the true one. If so, this would imply that our grasp of less informed
minds could be fundamentally skewed by the contents of our own. By better understanding
how knowledgeable agents come to represent naïve minds, future work can investigate how
to remedy this curse.

However, it is an open question how to best correct the beliefs of knowledgeable adults
asked to informally teach. Perhaps it is enough to simply tell knowledgeable adults the
hypotheses a learner is considering; or perhaps adults also need to be explicitly told how a
learner weights these hypotheses, being shown that a learner still places considerable weight
on hypotheses “farther” from the truth. It is also unclear whether individual-level learner
assessments are needed. Perhaps, simply being told what learners believe in general could
help teachers understand the breadth of hypotheses learners may consider, or perhaps only
individual-level information is helpful. This could vary as a function of domain: in cases
where learners’ hypothesis spaces are largely unique, individual-level information might be
required, and in cases where learners tend to consider similar hypotheses, information about
the average learner could be equally helpful. These are questions we hope to address in future
work.

A related open question is how knowledgeable and naïve agents’ hypothesis spaces change
throughout a pedagogical interaction. Our computational model was designed to capture ped-
agogical interactions at a computational level of analysis (Marr, 1982). As such, our model
used static and pre-determined hypothesis spaces that represented the full space of alternatives
learners could consider throughout a pedagogical interaction. Intuitively, however, learners
are likely to actively generate hypotheses in response to the data they receive from teach-
ers (Schulz, 2012). The question of how learners actively build their hypothesis spaces is
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beyond the scope of this work but is an important open question for understanding how adults
can sometimes not only fail to teach effectively but inadvertently mislead learners (by guid-
ing them to generate incorrect hypotheses that they did not have prior to the interaction).
Nonetheless, our findings still demonstrate that even in minimally complex tasks, untrained
teachers can generate informative data but fail to consider hypotheses learners find plausible.

Finally, we manipulated hypothesis space complexity in our model by increasing the
number and kind of hypotheses a space could contain. However, it is also possible to
scale complexity by varying not the specific hypotheses included in a space but rather the
degree of plausibility placed upon these hypotheses. Such hypothesis spaces could better
capture our finding that knowledgeable adults are willing to believe learners might consider
hypotheses further from the truth, but simply expect learners to find these hypotheses unlikely
(Experiment 2). Future work should address this possibility, implementing models where the
prior distribution over a space of hypotheses is manipulated, rather than the nature of the
hypotheses themselves (or a combination of the two).

6.3. Conclusion

Even from the first years of life, humans teach effectively, considering what others know
or want and sharing the information we think they need (Gweon, 2021). Yet, while we excel
in constrained teaching tasks from childhood (Rhodes et al., 2010; Shafto et al., 2014), even
adults fail to effectively share information in more naturalistic tasks (e.g., Chi et al., 2004).
Across three studies, we find that when knowledgeable adults teach, they often fail to consider
the breadth of hypotheses a naïve learner may be considering. Although knowledgeable adults
provide informative data when they teach (as assessed by a computational model of a rational
teacher), they do not provide enough information for some naïve participants to learn. Our
results unify prior findings, suggesting that adults should successfully share their knowledge
in tasks where the kinds of hypotheses learners can consider are relatively constrained, but
struggle in more naturalistic tasks where learners can consider varied possibilities. Because
most real-world pedagogy occurs in naturalistic, unconstrained settings, these findings sug-
gest that when sharing knowledge, we could all benefit from putting more effort into gauging
learners’ beliefs—or constraining them.
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Notes

1 We do not consider the hypothesis space that consists only of hypotheses with no logical
primitives (A, B, C, D, E), because it does not contain the true hypothesis AND(B,E)
used in our task.

2 Note that at a depth of 2, hypotheses can contain only up to two primitives. Two primi-
tives can only be combined in one way: with either an AND or an OR operator. That is,
participants can hypothesize that either A or B make the machine activate (OR(A, B)), or
that both A and B are required (AND(A, B)), but there is no way to add a second logical
operator to either of these hypotheses. Only at a depth of 3 can multiple operators be
combined in one hypothesis. Thus, at a depth of 2, there is no difference between the
single-operator and dual-operator hypotheses spaces.

3 A reasonable alternative would have been to implement a “simplicity prior” to penalize
complex hypotheses. We opted not to do this because in our approach, each hypothesis
space is meant to represent what learners might consider plausible (testing data quality
across a range of nested hypothesis spaces). A simplicity prior would, a priori, deem
some hypotheses to be implausible.

4 Teachers were instructed not to provide duplicate examples, but despite this, some par-
ticipants produced duplicates (generally, by providing the example “B&E” more than
once). Any duplicates were removed before providing the data as an input to the model,
but the full data (duplicates included) are available in the OSF project page.
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Supplementary Information
Supplementary Fig. S1. Posterior probability mass

placed on the true hypothesis (B&E) by the model as a
function of teachers’ examples. The posterior of the true
hypothesis given teachers’ original examples is plotted in
blue; the posterior-given shuffled data are plotted in pur-
ple; and the posterior-given randomly generated exam-
ples are plotted in red. The dashed lines mark the 50%
and 95% probability thresholds. An abridged version of

https://doi.org/10.1177/147470491301100306


R. Aboody et al. / Cognitive Science 47 (2023) 31 of 31

this plot can be found in the main manuscript; we provide
the full version here.

Supplementary Fig. 2. The additional light-up
machines used in Experiment 3, depicted with their
corresponding blocks. Block M is required to make the
first machine go; blocks Q, T, and V are all required to
make the second machine go.


